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The nonlinear development of stationary crossflow vortices over a 45◦ swept NLF(2)-
0415 airfoil is studied. Previous investigations indicate that the linear stability theory
(LST) is unable to accurately describe the unstable flow over crossflow-dominated
configurations. In recent years the development of nonlinear parabolized stabil-
ity equations (NPSE) has opened new pathways toward understanding unstable
boundary-layer flows. This is because the elegant inclusion of nonlinear and non-
parallel effects in the NPSE allows accurate stability analyses to be performed with-
out the difficulties and overhead associated with direct numerical simulations (DNS).
NPSE results are presented here and compared with experimental results obtained at
the Arizona State University Unsteady Wind Tunnel. The comparison shows that the
saturation of crossflow disturbances is responsible for the discrepancy between LST
and experimental results for cases with strong favourable pressure gradient. However,
for cases with a weak favourable pressure gradient the stationary crossflow distur-
bances are damped and nonlinearity is unimportant. The results presented here clearly
show that for the latter case curvature and non-parallel effects are responsible for the
previously observed discrepancies between LST and experiment. The comparison of
NPSE and experimental results shows excellent agreement for both configurations.

Through this work, a detailed quantitative comparison and validation of NPSE
with a careful experiment has now been provided for three-dimensional boundary
layers. Moreover, the results validate the experiments of Reibert et al. (1996), and
Radeztsky et al. (1993, 1994) suggesting that their databases can be used by future
researchers to verify theories and numerical schemes. The results show the inadequacy
of linear theories for modelling these flows for significant crossflow amplitude and
demonstrate the effects of weak curvature to be more significant than slight changes
in basic state, especially near neutral-stability locations.

1. Introduction
The wings of high-speed aircraft are swept resulting in three-dimensional boundary

layers over the wing surface. A typical three-dimensional boundary-layer velocity
profile is shown in figure 1. For the boundary layer over an infinite-span swept
airfoil there are no gradients in the spanwise (z) direction and the pressure is nearly
constant across the boundary layer itself so that pressure varies only in the direction
normal to the leading edge along the body. This causes the inviscid streamlines to
be curved and deflected inboard near the leading edge. The local-inviscid direction
is defined as the direction tangent to the velocity at the edge of the boundary layer.
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Figure 1. Typical three-dimensional boundary-layer profile.

The crossflow direction is then defined to be perpendicular to both the wall-normal
and local-inviscid directions such that the coordinate system is right-handed. Since
the pressure gradient is in a direction normal to the leading edge (x = 0), there will
be pressure gradients associated with both the inviscid and crossflow directions. At
a point located just outside the boundary layer, the viscous forces are negligible so
the inertia forces are in balance with the pressure forces. Moving toward the wall, the
viscous forces undo this balance. The crossflow velocity component is generated to
compensate for this imbalance.

The crossflow velocity must be zero at the wall (y = 0) and approach zero
asymptotically as y → ∞. Thus, there must be an inflection point somewhere in the
velocity profile. This inflection point is the harbinger of a dynamic instability.

When the crossflow velocity component is present, disturbances entering the bound-
ary layer interact with roughness near the leading edge to form travelling (unsteady)
crossflow vortices. In low-turbulence-level environments roughness may introduce
stationary crossflow vortices. Linear stability theory predicts that the most amplified
crossflow disturbances are travelling waves; however experiments have since shown
that either travelling or stationary disturbances will dominate the transition process
depending on the turbulence level outside the boundary layer. For detailed discussions
refer to the literature (Bippes 1991; Bippes, Müller & Wagner 1991; Bippes & Müller
1990; Müller & Bippes 1989; Deyhle, Höhler & Bippes 1993). They showed that
the travelling crossflow disturbance will dominate when the free-stream environment
has a high level of unsteady disturbances, while the stationary crossflow disturbance
is observed for low-turbulence environments. The low-turbulence-level environment
is generally regarded as a more accurate depiction of flight conditions. They also
noticed saturation of the stationary crossflow waves during the low-turbulence-level
experiments. The conclusion of Bippes (1991) is that linear stability theory (LST) fails
to predict the growth rates for three-dimensional flows. Discrepancies with LST are
also observed in the experimental investigations of Kachanov & Tararykin (1990),
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Radeztsky, Reibert & Saric (1994), and Reibert et al. (1996). Some of these results are
recapitulated in Arnal (1994) and Reed, Saric & Arnal (1996). It is clear from these
experiments that LST is unable to cope with crossflow-dominated unstable flows.

Recently the parabolized stability equations (PSE) have been developed which
exploit the convective nature of the disturbance to convert the disturbance equations
into a system of parabolic differential equations. This allows the spatial evolution of
disturbances to be studied using an efficient marching algorithm. Several investigators
have successfully applied this technique to various geometries including flat plates,
swept Hiemenz flow, cones, and infinite swept wings (Herbert 1994, 1997; Arnal et al.
1997; Malik 1997; Bertolotti 1990, 1996).

In particular, using nonlinear parabolized stability equations (NPSE), Bertolotti
(1996) studied the evolution of disturbances for the above-referenced experiments of
Bippes and colleagues on a swept flat plate. He cleverly modelled the receptivity of
three-dimensional boundary layers to an array of surface bumps accounting for both
the streamwise and spanwise variations of the basic state and then carried the PSE
calculations on through to the amplitude-saturated states in the strongly nonlinear
regime. His results agree quantitatively with the experiments.

The NPSE appear to be the new state-of-the-art prediction and analysis tool for
boundary-layer stability investigations. The success of other investigators motivates
this attempt to apply NPSE for the swept-wing case of Reibert et al. (1996) with the
objective of examining the effects of nonlinearity, curvature, pressure gradient, chord
Reynolds number (RC), and non-parallelism on crossflow disturbances.

2. Numerical formulation
2.1. Basic state

The present work investigates the stability of incompressible laminar boundary-layer
flows over swept wings. The configuration chosen for this investigation is the NLF(2)-
0415 airfoil at −4◦ angle-of-attack (AOA). The computational results complement
the experimental efforts of Reibert et al. (1996) who use the same configuration at
the Arizona State University Unsteady Wind Tunnel. This is an ideal setting for the
growth of crossflow disturbances and should suppress the growth of any Tollmien–
Schlichting (TS) waves that may be present. The basic-state flow is assumed to be
invariant in the spanwise (z) direction. The pressure distribution over the airfoil is
determined by the MCARF code (Stevens, Goradia & Braden 1971). This inviscid
solution provides the necessary edge boundary conditions for the boundary-layer
equations.

The compressible boundary-layer equations are formulated in body-intrinsic coor-
dinates. Although the configuration of interest for this paper is an incompressible
swept-wing flow, a compressible approach is developed so the authors may conduct
further analysis for high-speed flows. The following transformation is used to remove
the singularity at the attachment line and reduce the boundary-layer growth in the
computational domain:

ξ(x̄) = x̄, (2.1)

ζ(x̄, y) =
1√
2ξ

∫ y

0

ρ(x̄, ȳ) dȳ, (2.2)

where x̄ and y are the dimensionless streamwise and normal coordinates respectively:

x̄ =
x∗

Roδo
, y =

y∗

δo
. (2.3)



328 T. S. Haynes and H. L. Reed

Here δo is the boundary layer reference length and Ro is the corresponding Reynolds
number, Ro = Urδo/νr , where Ur and νr are the free-stream speed and kinematic
viscosity, respectively.

The transformed boundary-layer equations reduce to ordinary differential equations
at the attachment line (ξ = 0) which are solved to provide initial conditions for the
streamwise marching. The Chebyshev collocation method with Richardson iteration
and second-order finite-difference preconditioning is used to discretize these equations.
Fifth-order backward finite differencing is used for the streamwise derivatives. This
approach is similar to that used by Pruett & Streett (1991).

The solution for flow over a flat plate at zero AOA is computed to validate the
code and determine the appropriate grid parameters. Numerical experiments show
that the grid is well resolved when 81 collocation points are used. No clustering is
used other than the natural clustering occurring as a result of the transformation
to Chebyshev space. The optimum relaxation parameter (τ) and domain truncation
location (ζtrunc) are also determined by numerical experiment to be 0.2 and 12.0,
respectively. The convergence tolerance imposed on the residuals at the collocation
points is εtol = 10−8.

2.2. Disturbances

The total dimensionless flow quantities are separated into steady basic-state and
unsteady disturbance quantities:

φ(x, y, z, t) = Φ(x, y) + φ′(x, y, z, t), (2.4)

where φ = (ρ, u, v, w, T ). The disturbance equations are obtained by substituting this
form into the Navier–Stokes equations and subtracting terms which consist of purely
basic-state quantities. The curvature terms are retained in the equations unless noted
otherwise. The dimensionless compressible disturbance equations in body-intrinsic
orthogonal curvilinear coordinates in matrix form are

B0

∂φ′

∂t
+B1

∂φ′

∂x
+B2

∂φ′

∂y
+B3

∂φ′

∂z
+ C1

∂2φ′

∂x2
+ C2

∂2φ′

∂y2
+ C3

∂2φ′

∂z2

+D1

∂2φ′

∂x∂y
+D2

∂2φ′

∂x∂z
+D3

∂2φ′

∂y∂z
+D4φ

′ =N. (2.5)

For brevity, the components of the coefficient matrices are not presented. The non-
zero elements of the coefficient matrices can be found in Haynes (1996) and are also
available from the Journal of Fluid Mechanics Editorial Office on request.

For the linear PSE (LPSE) the nonlinear products of φ′ are dropped and the
disturbance is decomposed into a rapidly varying ‘wave function’ and a slowly varying
‘shape function’. This is accomplished using a multiple-scales approach recalling that
Ro = Urδo/ν:

φ′(x, y, z, t) = φ̃(x̄, y)︸ ︷︷ ︸
shape function

χ(x, z, t)︸ ︷︷ ︸
wave function

+ c.c., (2.6)

where
∂χ

∂x
= iα(x̄),

∂χ

∂z
= iβ,

∂χ

∂t
= −iω. (2.7)

Here β and ω are the dimensionless spanwise wavenumber and frequency of the
disturbance. The ‘shape function’ φ̃ and streamwise wavenumber α depend on the
slowly varying scale x̄ while the ‘wave function’ χ depends on the rapidly varying
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scale x (x = Rox̄). This gives the following form for the streamwise derivatives of
disturbance quantities:

∂φ′

∂x
=

{
1

Ro

∂φ̃

∂x̄
+ iαφ̃

}
χ+ c.c.,

∂2φ′

∂x2
=

{
1

R2
o

∂2φ̃

∂x̄2
+

2iα

Ro

∂φ̃

∂x̄
+

iφ̃

Ro

dα

dx̄
− α2φ̃

}
χ+ c.c.

 (2.8)

The approach taken here is to simply substitute these forms into the disturbance
equations and neglect the O(1/R2

o) second-derivative term. This yields the system of
equations: (L0 +L1

)
φ̃+L2

∂φ̃

∂x̄
+ φ̃L3

dα

dx̄
= 0. (2.9)

Here L0 contains the linear parallel terms, L1 contains the non-parallel basic-state
terms, L2 and L3 arise due to the non-parallel disturbance terms. The L0 operator
reduces to the Orr–Sommerfeld operator for incompressible flows.

This system of equations is parabolic and thus requires boundary and initial
conditions. The disturbance velocity and temperature are set equal to zero at the wall
and as y →∞

ũ = ṽ = w̃ = T̃ = 0. (2.10)

This corresponds to no-slip and no-temperature-fluctuation boundary conditions at
the wall, and vanishing temperature and velocity disturbances as y → ∞. These
boundary conditions are reasonable for the flow of gas over a solid wall (Mack 1969).
Since there is no physical boundary condition for ρ̃ at the wall and as y → ∞, the
mass equation is applied to close the system. Initial conditions are obtained by solving
the linear (parallel) stability equations.

There still remains the matter of the ambiguity in x-dependence between φ̃ and χ
in the decomposition (2.6). This is resolved by imposing a normalization condition
on the shape function:

% =

∫ ∞
0

ũ†
∂ũ

∂x̄
dy = 0, (2.11)

where † denotes the complex conjugate. This normalization ensures that any rapid
changes in the streamwise direction will be ‘absorbed’ by the ‘wave function’ so
that the ‘shape function’ will vary slowly in this direction. This allows the O(1/R2

o)
diffusion term to be discarded. An integral normalization is chosen here rather
than one applied at the location of the shape-function maximum because the shape
functions may develop multiple maxima during nonlinear streamwise marching.

The NPSE are derived in a fashion similar to the LPSE. Each disturbance quantity
is transformed spectrally in the spanwise and temporal directions using

φ′(x, y, z, t) =

∞∑
n=−∞

∞∑
k=−∞

φ̃(n,k)(x̄, y)︸ ︷︷ ︸
shape function

A(n,k)(x) ei(kβoz−nωot)︸ ︷︷ ︸
wave function

(2.12)

where
dA(n,k)

dx
=A(n,k)iα(n,k)(x̄). (2.13)

Here each ‘mode’, (n, k), is considered to be the product of a ‘shape function’
and a ‘wave function’. Substituting this disturbance form into the Navier–Stokes
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equations gives

∞∑
n=−∞

∞∑
k=−∞

{(L0 +L1

)
φ̃+L2

∂φ̃

∂x̄
+

dα

dx̄
L3φ̃

}
(n,k)

A(n,k) ei(kβoz−nωot) =N. (2.14)

The portion in brackets on the left-hand side contains the same quantities as in
equation (2.9) for the LPSE except the quantities α and φ̃ now carry the subscripts
(n, k) identifying them with a particular mode, and ω and β appearing in equation (2.9)
must be replaced with nωo and kβo respectively. Here ωo and βo are the fundamental
frequency and spanwise wavenumber, respectively, of the disturbance. The marching
procedure described for the LPSE is implemented for the NPSE by requiring each
mode to individually satisfy equation (2.11). The boundary conditions for individual
NPSE modes are the same as those for LPSE (2.10) except for mean flow distortion
(k = 0, n = 0), where the normal velocity condition as y →∞ is replaced by

∂ṽ(0,0)

∂y
= 0. (2.15)

An NPSE program was written to solve equation (2.14) using fourth-order-accurate
finite differences in the normal direction. The explicit Euler scheme is used for the first
streamwise step, beyond which second-order backward finite differences are used. The
basic-state quantities appearing in the NPSE are computed using the boundary-layer
program discussed in the previous section. The nonlinear terms can be omitted within
the program to solve the LPSE (equation (2.9)). The ability to omit or retain curvature
terms is also designed into the program.

The program design also facilitates LST solutions by settingL1,L2, andL3 equal
to zero and modifying the boundary conditions. In this case the equations constitute a
nonlinear eigenvalue problem. A local solution method is used where the streamwise
disturbance velocity boundary condition is replaced with

ρ̃ = 1 (2.16)

which simply normalizes the eigenvector. Enforcing this inhomogeneous boundary
condition in conjunction with a guess for the eigenvalue (αg) results in a boundary

value problem for φ̃:

L0(αg)φ̃ = 0, (2.17)

with

ρ̃ = 1, ṽ = w̃ = T̃ = 0 at y = 0, (2.18)

and

ũ = ṽ = w̃ = T̃ = 0 as y →∞. (2.19)

This system is solved for φ̃ and α is updated using Newton’s method until the
boundary condition ũ = 0 is satisfied at the wall. For further details see Malik,
Chuang & Hussaini (1982).

This local method requires an initial guess for the eigenvalue (αg). A global eigen-
solver was written to provide the initial eigenvalues using a Chebyshev collocation
discretization in the y-direction. The nonlinear eigenvalue problem is transformed
to a linear problem by extending the eigenvector (Bridges & Morris 1984). Once
the eigenvalue is known at an initial streamwise station, the LST program can be
marched downstream using the eigenvalues from previous streamwise locations as
initial guesses. Solutions from the LST are also used as initial conditions for the
LPSE and NPSE marching.
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In the NPSE calculations presented here, only the fundamental (0, 1) mode is
excited initially and harmonics up to mode (0, 8) are turned on when the maximum
of ûrms , defined later in this section, for a ‘neighbouring’ mode becomes O(10−8).
The initial shape functions for the harmonics are obtained by solving their local
inhomogeneous mode equations with forcing due to nonlinear interactions. The initial
complex wavenumber is determined by averaging the complex wavenumbers of the
modes contributing to the nonlinear forcing. Because the Mach number is low, only
the quadratic nonlinear terms are computed. A small marching step (∆(x∗/c) ≈ 0.001)
is taken in order to obtain high streamwise resolution.

The flat-plate boundary-layer flow is used to test the code and determine the
appropriate grid parameters. Grid refinement is achieved by performing linear parallel
stability calculations by turning off the nonlinear and non-parallel terms in the NPSE
code. The grid is refined until the eigenvalues of the linear stability formulation
converge. To further verify the NPSE code, the analysis of Bertolotti (1990) for two-
dimensional disturbances in an incompressible flat-plate boundary layer is repeated
and excellent agreement is obtained.

We now turn our focus to applying these programs to the investigation of swept-
wing crossflow vortices. In the experiment of Reibert (1996), the spanwise wavelength
is forced by an array of roughness elements at dimensional position x∗ = 0.023
chord (c) with 12 mm spanwise spacing. To model this situation with the NPSE, only
the fundamental spanwise wavenumber corresponding to a spanwise wavelength of
12 mm is excited initially. This mode is initiated at x∗/c = 0.05 using the global
eigensolver to acquire the initial conditions. The initial amplitude is chosen such
that the disturbance mode shape maximum amplitude, [urms ]max matches that of
the experiment at x∗/c = 0.10. It typically required three iterations to match the
experimental [urms ]max amplitude at x∗/c = 0.10 by choosing [urms ]max at x∗/c = 0.05.
The NPSE is started upstream of the region for experimental comparisons to allow
numerical transients to die out. The urms profiles at an arbitrary streamwise location,
x = x̂, are defined as

urms (x̂, y) ≡
[

1

zmax

∫ zmax

0

{
u∗(x̂, y, z)
ue(x̂)

− uavg(x̂, y)

}2

dz

]1/2

, (2.20)

where

uavg(x̂, y) ≡ 1

zmax

∫ zmax

0

u∗(x̂, y, z)
ue(x̂)

dz, (2.21)

[urms ]max ≡ max
y
urms (x̂, y), (2.22)

and zmax is the spanwise extent of sampling. In the above definitions u∗ is the
dimensional velocity measured by the hot-wire probe of the experiment, and ue
is its dimensional value at the boundary-layer edge. With this definition, the urms

profiles contain information contributed from all the spanwise disturbance modes
((0, 1), (0, 2), . . .) but not the contribution from the mean-flow distortion, mode (0, 0).
This allows the disturbance to be separated from the basic state so that N-factor
calculations can be performed from experimental measurements. The uavg profiles are
the sum of the ‘undisturbed’ basic state and the mean-flow distortion which develops
due to nonlinear interactions.

A second quantity will be used to compare the amplitudes of the computed
velocity profiles for each of the individual NPSE modes to allow mode–mode
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Figure 2. NLF(2)-0415 airfoil at −4◦ angle-of-attack.

amplitude comparisons:

ûrms (x̂, y) ≡
[
βo

2π

∫ 2π/βo

0

{
ũ(0,k)(x̂, y, z)A(0,k)(x̂)eikβoz + c.c.

}2

dz

](1/2)

=

{ √
2|ũ(0,k)||A(0,k)| for k 6= 0

1
2

√
2|ũ(0,k)||A(0,k)| for k = 0,

(2.23)

[ûrms ]max ≡ max
y
ûrms (x̂, y). (2.24)

It is important to distinguish that the definition of [ûrms ]max is used during the NPSE
calculation to determine where neighbouring modes should be activated and for post-
calculation comparisons between NPSE modes, while the definition of [urms ]max is
used for comparisons with experimental data.

3. Baseline results
Different coordinate systems are used for the computations and experiments. Figure

2 depicts the swept-wing configuration as it is mounted in the unsteady wind tunnel.
The wall liners in the tunnel duplicate the inviscid streamlines so that a spanwise-
independent basic-state flow is achieved. In this figure the free-stream flow is from left
to right and parallel to plane ADFE. The plane ABCD slices the airfoil perpendicular
to the leading edge so the angle \BAE = Λ, the sweep angle, which is 45◦ for this
case. Plane ABCD represents the plane in which the computations are performed.
The computational grid is body-intrinsic so the local x-direction lies in plane ABCD
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Figure 3. Comparison of computational and experimental (a) pressure coefficients and (b) velocity
profiles at x∗/c = 0.50 (symbols for reference only).

and is tangent to the airfoil surface, the local y-direction lies in plane ABCD and is
normal to the airfoil surface, and the local z-direction is perpendicular to the plane
ABCD.

For the experiment, a hot-wire probe is mounted at the end of a sting and aligned to
traverse in a different coordinate system, (X,Y , Z ), which is shown in figure 2. During
the set-up procedure the hot wire is aligned parallel to the Z-axis and thus reports the
magnitude of the projection of the total velocity vector onto plane ADFE. The probe
is rotated twice: once about the Z-axis to bring it into contact with the airfoil surface,
and a second time about its own axis until both prongs of the probe are tangent
to the airfoil surface. Boundary-layer profiles are then obtained by traversing in the
Y -direction. In all of the following comparisons of computational and experimental
results, the computational results are transformed to the experimental coordinate
system and the probe velocity is computed taking the rotations mentioned above into
consideration.

Before planning the experimental and numerical investigation, the N-factors for
several spanwise wavelengths are computed using LST. The free-stream turbulence
level is very low (O(10−4)) so that stationary crossflow vortices are expected to
appear and dominate transition. The N-factor corresponding to a stationary crossflow
disturbance with spanwise wavelength of 12 mm appears to experience the largest
growth for this configuration (NLF(2)-0415 airfoil at −4◦ AOA) and thus is chosen
as the fundamental mode for the experiments and the computations. The crossflow
vortices are generated during the experiment by placing 6µm high roughness elements
on the wing near the leading edge (x∗/c = 0.023) separated by 12 mm in the spanwise
direction (z). It should be noted that the roughness spacing of 12 mm in the spanwise
direction along the wing is different from the spacing of the crossflow vortices
themselves since they are approximately aligned in the local inviscid direction. See
Reibert et al. (1996) for details of the experimental facility. Results presented in this
section constitute a baseline case from which parameter studies are made.

3.1. Basic state

The inviscid flow over the swept wing is computed using the MCARF panel code
(Stevens et al. 1971). Figure 3(a) shows a comparison of experimental and numerical
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Figure 4. Computed [ûrms ]max magnitudes for the various modes RC = 2.4× 106
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pressure coefficient (Cp) versus percent chord. This pressure distribution provides
the edge boundary conditions for the boundary-layer code. Figure 3(b) shows the
comparison of experimental and numerical streamwise boundary-layer profiles at
x∗/c = 0.50 for RC = 1.6×106. The experimental profile is taken for a smooth leading
edge (no artificial roughness elements) so the flow is laminar at this chord position.
The overall agreement is good.

3.2. Disturbances

In the experiment of Reibert et al. (1996), 6 µm high roughness elements are placed
near the wing leading edge with 12 mm spanwise spacing. The chord Reynolds number
and Mach number for this case are RC = 2.4×106 and M = 0.065. The entire unstable
boundary layer from the initial condition at x∗/c = 0.05 to x∗/c = 0.45 is computed
with the boundary-layer and NPSE codes. As mentioned before, the initial condition
is obtained from LST and the initial amplitude is chosen such that the disturbance
[urms ]max amplitude matches that of the experiment at x∗/c = 0.10.

The experimentally observed transition location for this configuration is x∗/c ≈
0.52. Experimental results are available for comparison in this range in 5% chord
location increments (i.e. data at x∗/c = 0.05 , x∗/c = 0.10 , . . . x∗/c = 0.45).

Figure 4 shows the [ûrms ]max amplitudes versus chord position for several NPSE
modes. Modes (0, 2)–(0, 4) and the mean-flow distortion (0, 0) are activated almost
immediately by applying the criterion that modes be activated when the maximum
ûrms amplitude of a neighbouring mode exceeds O(10−8). Modes (0, 5)–(0, 8) are
activated sequentially as the marching proceeds. Although this scheme would dictate
the inclusion of modes (0, 9) and higher (since the maximum ûrms amplitude of mode
(0, 8) exceeds O(10−8) at x∗/c ≈ 0.25), mode (0, 8) is two orders of magnitude smaller
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x∗/c = 0.35 (symbols for reference only).

than the fundamental at the last chordwise station (x∗/c = 0.45) so the higher modes
are considered to be unimportant for this case.

All the modes appear to grow rapidly at first, saturating at x∗/c ≈ 0.35. This is
due to the strong nonlinear interaction among the modes which occurs over a large
chordwise region before the transition location reported in the experiment. It is also
notable that the spanwise modes retain their amplitude ordering for the entire extent
of the calculation.

At x∗/c = 0.10 the mean-flow distortion (0, 0) and modes (0, 2)–(0, 4) are active. For
all these modes the u- and w-components are at least an order of magnitude larger
than the v-component. In general, the number of extrema appearing in the NPSE
mode shapes increases with increasing mode index indicating that a more complicated
flow structure is contributed to the total disturbance by the higher modes. Figures
5(a) and 5(b) show these mode shapes for the first two modes at x∗/c = 0.35 in
the computational coordinate system. At this location an additional ‘hump’ begins
to appear in the (0, 1) and (0, 2) mode ûrms and ŵrms profiles. This coincides with
the saturation location of the maximum ûrms amplitudes (figure 4) and indicates a
strong nonlinear interaction between the (0, 1) and (0, 2) modes. At x∗/c = 0.40 the
additional hump has completely developed (adding two extrema) in the mode (0,1)
profiles; however the additional hump in the profiles for mode (0, 2) has disappeared.
The mean-flow distortion and higher modes apparently do not participate in this
interaction.

Figures 6(a)–6(c) show the comparison of experimental and computational velocity
contours at x∗/c = 0.25, x∗/c = 0.35, and x∗/c = 0.45, respectively. For these plots
the ordinate is the dimensional y∗-coordinate and the abscissa is the dimensional
spanwise (z∗-) coordinate (both in mm) such that the viewer is looking in the
downstream direction. The contours are of the projection of the total velocity onto
the (X,Y )-plane as measured in the experiment by hot-wire probes. One wavelength
of the fundamental mode (12 mm) is covered in the spanwise direction and the y∗-
direction is scaled so the flow structure may be examined in detail. This ‘slice’ of
the crossflow vortex is taken in a plane which is parallel to the leading edge of the
wing.
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Figure 6. Comparison of computational and experimental total streamwise velocity contours at
(a) x∗/c = 0.25, (b) x∗/c = 0.35, (c) x∗/c = 0.45.
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Figure 7. Comparison of computational and experimental disturbance urms profiles at x∗/c = 0.45
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The development of these crossflow vortices occurs in two stages. For the purposes
of this discussion, consider the local coordinate frame with xcf aligned with the axis
of the crossflow vortex, ycf in the direction normal to the wall, and zcf such that
the coordinate system is right-handed and orthogonal. The velocity components in
the xcf , ycf , and zcf directions are denoted as ucf , vcf , and wcf , respectively. In the
first stage of crossflow development, the vcf and wcf components take the form of
co-rotating vortices. These vortices convect low-momentum fluid away from the wall
and high-momentum fluid toward the wall on the left-handside and right-handside,
respectively, of the vortex axes as viewed facing downstream. That is, the ‘upwelling’
and ‘downwelling’ present in figure 6(a) is caused by the motion of a crossflow vortex
which is rotating clockwise in this view. This first stage is linear.

This exchange of momentum occurs in a region very close to the wall where there
are large gradients in the undisturbed velocity profile. Because of this large gradient,
the small displacements caused by the vcf and wcf components of the disturbance
eventually lead to a large ucf disturbance component further downstream. This ucf

component soon becomes too large for nonlinear interactions to be neglected in
the calculations. This is the second stage of the crossflow development. The strong
nonlinear interaction between the (0, 1) and (0, 2) modes is evidenced by the roll-
over occurring in the velocity contour plots, the ûrms maximum amplitude saturation,
and the development of the additional hump in the mode (0, 1) shape functions for
streamwise locations beyond x∗/c = 0.35 (see figures 6(b) and 6(c)).

At all streamwise locations the experimental and computational urms profiles are
in excellent agreement. An example is shown in figure 7 for x∗/c = 0.45. These
profiles are computed by taking a spanwise r.m.s average of the velocity component
displayed in the contour plots above as defined by equations (2.20) and (2.21). These
profiles display the disturbance growth, show the development of the additional hump,
indicate the [urms ]max amplitude saturation, and allow a more direct comparison with
the experimental data than is possible with the total streamwise velocity contour plots.
The additional hump in the profiles becomes noticeable at approximately x∗/c = 0.35,
coinciding with the roll-over of the crossflow vortex and saturation of the [urms ]max

amplitude.
Figure 8 shows the experimental and computational N-factors computed using the

maximum of the urms profiles along with the N-factors for LPSE and LST. From this
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figure it is clear that both LPSE and LST fail to accurately describe the evolution
of crossflow disturbances. The NPSE N-factors accurately predict the saturation of
the disturbance and agree remarkably well with the experimental data. Comparing
the LPSE and NPSE it is found that there is indeed a linear range of growth up to
about x∗/c = 0.25 chord. All the computational results presented in this figure include
curvature. Previous results (Arnal 1994) comparing experimental and computational
N-factors using LST without curvature show a larger discrepancy than appears here.

4. Curvature, non-parallel, and nonlinear effects
There has been much debate in the literature about the effects of various curvature

terms on the stability of laminar boundary layers. Some of this confusion is due to
differences in notation used by different investigators. Another source of complications
arises in the LST where ad hoc local coordinate systems are chosen to lie in either the
local inviscid flow direction or in a direction such that the x-axis is aligned with the
direction of wave propagation. The reader is referred to the literature for the details
(Schrauf 1994, 1992; Spall & Malik 1990; Collier & Malik 1989).

The PSE formulation here utilizes a body-intrinsic coordinate system and the
curvature is included in the associated metric coefficients. The marching procedure
naturally aligns the disturbance wave propagation direction in the proper way as
demonstrated by the agreement of experimental and computational results for the
baseline case presented in the previous section. This same coordinate system is used
for the LST results which are included here for comparison.

The local radius of curvature of the wing appears in the equations through the
following terms:

k1 = 1 + y/rc, k2 =
1

y + rc
,

k3 = − 1

r2
c

drc
dx̄
≈ 0, k4 = − y

r2
c

drc
dx̄
≈ 0, (4.1)

where rc is the local dimensionless radius of curvature of the airfoil taken as positive
or negative for convex or concave regions, respectively. For all the computations
presented here curvature is neglected in the basic-state analysis. This is because the
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Figure 9. N-factors for (a) LST, (b) LSPE and (c) NSPE with and without curvature, 12 mm
spanwise wavelength, RC = 2.4× 106 (symbols for reference only).

basic-state curvature terms are the same order as the terms neglected according to
the boundary-layer approximation so it would be inconsistent to retain them. In the
limit of infinite curvature (flat plate), rc → ∞, so k1 = 1 and k2 = 0 are used in the
stability equations for cases where curvature is neglected and equations (4.1) are used
for cases where curvature is retained.

The inclusion of curvature has a very small effect on the metric coefficients for this
geometry. At x∗/c = 0.10 the change in the metric terms k1 and k2 due to curvature
is less than 0.5% and 0.1%, respectively. This may compel the researcher to ignore
curvature effects for this geometry. However, as the following results demonstrate,
even these small changes in the metric coefficients can have a significant effect on the
development of crossflow vortices.

The computational results show that curvature has no significant effect on the
streamwise wavenumber, but a stabilizing effect on the spatial growth rate. The stabi-
lizing effect of curvature is demonstrated in figure 9(a) which shows the computational
N-factors along with that of the experiment. Although the curvature significantly de-
creases the N-factor, neither LST approach properly models the crossflow disturbance
evolution for this configuration since they both fail to predict the amplitude saturation.

The N-factors for LPSE with and without curvature are presented in figure 9(b)
along with the experimental data. As expected, the curvature also has a stabilizing
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effect for this case. For the LPSE case the growth rates are larger than those of the
LST indicating that non-parallel effects are slightly destabilizing.

As demonstrated by theN-factor comparisons for the baseline case (figure 8), proper
description of the crossflow disturbance for this configuration requires the inclusion of
nonlinear terms in the computations. The comparison of computational urms profiles
computed with and without curvature shows development of an additional hump at an
earlier streamwise location and a larger amplitude when curvature is neglected. This
is not surprising since neglecting curvature leads to larger disturbance amplitudes,
which in turn initiates stronger nonlinear interactions. The case without curvature
also shows the roll-over of the vortices occurring at an earlier streamwise location.

Figure 9(c) shows the corresponding N-factors for the disturbance [urms ]max ampli-
tudes along with the experimental results. An interesting observation is that the
N-factor curve for the case without curvature shows a slight ‘double-saturation’
whereas the calculation including curvature does not for this case. That is, because of
stronger nonlinear interactions in the absence of curvature, the crossflow disturbance
appears to saturate initially, then grow and saturate a second time. The fact that no
double-saturation occurs in the experiment emphasizes the importance of curvature.

The results of this section demonstrate the importance of nonlinear, curvature,
and non-parallel effects for this configuration. As discussed further in the following
sections, curvature and non-parallel effects become increasingly important as the
favourable pressure gradient is decreased.

5. Chord Reynolds number effect
Here the effect of chord Reynolds number is investigated. Again the NLF(2)-0415

airfoil with 45◦ sweep at −4◦ AOA is considered with crossflow disturbances of 12 mm
fundamental spanwise wavelength. Computational results (NPSE) are presented for
chord Reynolds numbers RC = 1.6 × 106 and RC = 3.2 × 106. These are compared
with the experimental results of Reibert et al. (1996) and the baseline configuration
presented earlier.

5.1. RC = 1.6× 106

The chord Reynolds number and Mach number are adjusted to RC = 1.6 × 106

and M = 0.044 by decreasing the free-stream velocity from that of the baseline case
(RC = 2.4 × 106). The NPSE calculation is performed in the same fashion as the
baseline case. The disturbance is initiated by a single mode with 12 mm spanwise
wavelength at x∗/c = 0.05 chord location. The initial condition is obtained from
LST and the initial amplitude is chosen such that the disturbance [urms ]max amplitude
matches that of the experiment at x∗/c = 0.20. For this case the [urms ]max amplitude
is matched at x∗/c = 0.20 rather than x∗/c = 0.10 because the amplitude is too weak
to be accurately measured in the experiment ahead of x∗/c = 0.20 for this chord
Reynolds number. The results show no saturation of the crossflow disturbance for
this case.

Figure 10(a) shows the comparison of computational and experimental urms profiles
for several chord locations and excellent agreement is obtained. These profiles look
similar at all streamwise locations and the additional hump that signified strong
nonlinear interactions in the profiles of the baseline case does not appear. The
corresponding N-factor is shown along with that of the experiment in figure 11(a).
No evidence of saturation appears in the N-factor curves.

Figure 12(a) shows the experimental and computational uavg profiles for several
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(a) RC = 1.6× 106, (b) RC = 3.2× 106 (symbols for reference only).
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Figure 11. Comparison of computational and experimental N-factors, (a) RC = 1.6× 106,
(b) RC = 3.2× 106 (symbols for reference only).

streamwise locations. The profiles are free of any measurable mean-flow distortion.
This reaffirms the linear nature of the disturbance for this RC . The total streamwise
velocity contours show spanwise modulation, but there is no roll-over of the crossflow
vortex.

5.2. RC = 3.2× 106

The chord Reynolds number and Mach number are adjusted to RC = 3.2× 106 and
M = 0.087 by increasing the free-stream velocity accordingly. For this case the initial
amplitude of the fundamental mode is chosen such that the [urms ]max amplitude of the
disturbance matches that of the experiment at x∗/c = 0.10. The [ûrms ]max amplitudes
undergo strong saturation of all the modes at an earlier streamwise location than
that observed in the RC = 2.4 × 106 case. The transition location observed in the
experiment also occurs at an earlier streamwise location, x∗/c = 0.32, and the last
experimental data set available for comparison is at x∗/c = 0.29.

The comparison of experimental and computational urms profiles is shown in figure
10(b) for several streamwise locations. As in the previous comparisons, the NPSE



342 T. S. Haynes and H. L. Reed

0.20 NPSE
0.20 experiment
0.35 NPSE
0.35 experiment
0.50 NPSE
0.50 experiment

x*/c
0.10 NPSE
0.10 experiment
0.29 NPSE
0.29 experiment

x*/c

5

4

3

2

1

0 0.25 0.50 0.75 1.00

uavg

y*  (
m

m
)

(a)
5

4

3

2

1

0 0.25 0.50 0.75 1.00
uavg

(b)

Figure 12. Comparison of computational and experimental uavg profiles for several streamwise
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Figure 13. Comparison of computational and experimental total streamwise velocity contours at
x∗/c = 0.29, RC = 3.2× 106.

results show excellent agreement with the experiment. The anticipated strong non-
linear interaction causes development of the additional hump at an earlier streamwise
location (x∗/c = 0.25) than that of the baseline case (RC = 2.4 × 106). The corre-
sponding N-factors are shown in figure 11(b). The NPSE accurately describes the
strong saturation of the crossflow disturbance for this case.

Figure 12(b) shows the comparison of experimental and computational uavg pro-
files which develop the inflection due to mean-flow distortion. The comparison of
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experimental and computational total streamwise velocity contours given in figure
13 allows the best evaluation of the spanwise details of the flow field. The results
here are similar to those of the baseline case except the roll-over occurs at approxi-
mately x∗/c = 0.25 rather than x∗/c = 0.35. The overall qualitative agreement is very
good.

5.3. Summary of RC effect

For all three cases (RC = 1.6 × 106, 2.4 × 106, and 3.2× 106) the agreement between
computation and experiment is excellent. The computational N-factors and [urms ]max

amplitudes for these cases are presented in figures 14 and 15, respectively. These
results suggest that, for this configuration, there is a threshold chord Reynolds
number above which the disturbance will saturate and below which no saturation will
take place and the disturbance will evolve in a linear fashion. Clearly RC = 1.6× 106

is below this threshold and the resulting disturbance field is predominantly linear.
The RC = 2.4× 106 case is just over the threshold showing definitely strong nonlinear
interactions but weak amplitude saturation. The RC = 3.2 × 106 case exceeds the
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Figure 16. Computed LST N-factors for several spanwise wavelengths (λz), (a) with curvature and
(b) without curvature, AOA = −1◦, RC = 2.4× 106 (symbols for reference only).

threshold and exhibits strong nonlinear interactions and strong saturation with the
growth of the disturbance [urms ]max amplitude levelling off at x∗/c ≈ 0.25.

Figure 15 suggests that there may be an ‘equilibrium’ disturbance [urms ]max ampli-
tude associated with this configuration. Both the RC = 2.4× 106 and RC = 3.2× 106

cases show saturation at [urms ]max ≈ 0.18. This is in spite of the fact that the ini-
tial amplitudes, saturation locations, and chord Reynolds numbers are substantially
different. It is also important to note that, for a given experimental roughness config-
uration, increasing RC also results in an increase in the initial disturbance amplitude.
If the roughness height is fixed, as it is for this investigation at h = 6 µm, increasing
RC increases the ratio of the roughness height to the boundary-layer thickness at
the location of the forcing. This results in a larger initial disturbance amplitude at
the location of the forcing. The effect of initial conditions is a subject for further
investigation.

6. Effect of pressure gradient
Here the effect of AOA is studied by comparing NPSE results for the baseline

configuration (AOA of −4◦) with those for AOA of −2◦ and −1◦. The free-stream
conditions, initial amplitude, and spanwise wavelength of the baseline configuration
are used. No experimental data are available for these configurations. The objective
here is to assess the effect of the pressure gradient on the crossflow disturbance.

The N-factors for AOA of −2◦ and several spanwise wavelengths were computed
according to LST and showed a dramatic decrease in growth rates for all spanwise
wavelengths compared to the AOA = −4◦ case. The 12 mm mode still has the largest
N-factor at x∗/c = 0.50. NPSE results at this AOA show no evidence of saturation
or strong nonlinear interactions, indicating that this configuration is predominantly
linear. The urms profiles indicated linear disturbance behaviour since they did not
display the additional hump associated with strong nonlinear interactions.

The AOA is further adjusted to −1◦ and the subject of curvature is revisited. Figures
16(a) and 16(b) present the LST results for −1◦ AOA with and without curvature
terms included. The effect of curvature for this configuration is quite dramatic. The
N-factor at x∗/c = 0.45 for the 12 mm spanwise wavelength changes from negative
10.5 to positive 2.5 when curvature is neglected. The disturbances with longer spanwise
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Figure 17. NPSE N-factors for several angles-of-attack, 12 mm fundamental spanwise wavelength
(symbols for reference only).

wavelengths are not as dramatically affected. Another important consequence is the
shift of the dominant spanwise wavelength predicted by LST. At x∗/c = 0.50, the
dominant spanwise wavelength according to LST with curvature is approximately
20 mm in contrast to 12 mm for the case without curvature. The NPSE results are
similar to those for −2◦ AOA except that the crossflow disturbance is even weaker;
the disturbance is not even detectable in plots of total streamwise velocity contours.

Figure 17 shows the effect of AOA on the NPSE N-factors for the three cases
studied here. It is important to note that for AOA = −2◦ and AOA = −1◦ the NPSE
results are essentially linear. The magnitude of the largest harmonic for the case of
AOA = −1◦ is three orders of magnitude smaller than the fundamental. Since the
NPSE calculation for AOA = −1◦ is essentially linear, comparing the N-factors from
figures 17 and 16(a) (for 12 mm spanwise wavelength) shows that the non-parallel
effects are strongly destabilizing. As mentioned previously, the effect of curvature
for this case is strongly stabilizing. The disturbance is extremely sensitive to both
curvature and non-parallel effects, and they must be included in the computations if
accurate stability results are to be achieved. The sensitivity of the crossflow disturbance
for AOA = −1◦ prompts a closer examination of the results of Radeztsky et al. (1994)
for this same airfoil (NLF(2)-0415) at AOA = 0◦.

7. Comparison with Radeztsky et al.
The key results of the previous section should not be overlooked since they

explain the large discrepancies between the experimental and computational results of
Radeztsky et al. (1994) (see also Radeztsky 1994). Here N-factor comparisons between
experiment, LPSE (without curvature), and LST (with and without curvature) show
severe disagreement. The experiments were performed for the NLF(2)-0415 airfoil
with 45◦ sweep, 0◦ AOA, and RC = 3.0 × 106. However, the stability calculations
were performed for −1◦ AOA and RC = 3.2 × 106 to adjust for slight differences
in the computational and experimental basic states. Radeztsky et al. (1994) suggest
that the discrepancies between the computational and experimental stability results
are due to nonlinear effects. However, the experimental disturbance mode shapes
have no additional humps or other features that would indicate strong nonlinear
interactions.
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In this section NPSE, LPSE, and LST results for the NLF(2)-0415 airfoil at 0◦
AOA and RC = 3.0× 106 are presented and compared with the results of Radeztsky
et al. (1994) in order to resolve the discrepancies. Figure 18 shows the comparison
of computational N-factors with those of Radeztsky et al (1994) for RC = 3.0 × 106

and AOA = 0◦. The LST N-factor for RC = 3.2× 106 at −1◦ AOA without curvature
is included to show the wide discrepancy encountered previously. The experimental
results show a decaying crossflow disturbance in sharp contrast to the growing
disturbance predicted by the LST calculation.

LPSE results (with curvature) are included for two flow configurations: (i) the
configuration corresponding to the actual experimental configuration with no adjust-
ments for basic-state differences (RC = 3.0×106, AOA = 0◦) and (ii) the configuration
corresponding to the ‘corrected’ basic-state flow according to Radeztsky et al. (1994)
(RC = 3.2 × 106, AOA = −1◦). Figure 18 shows that the experimental N-factor
curve lies between those of the former and latter cases suggesting that the basic-state
corrections may have been too severe. The NPSE N-factor for RC = 3.0 × 106 and
AOA = 0◦ is also included in the figure and follows closely the corresponding LPSE
N-factor curve confirming the linear nature of the disturbance for this configuration.

Several important conclusions are in order. First, the nonlinear interactions are not
in fact the cause of the discrepancies between the previous computational and exper-
imental results. The LPSE calculations presented here show much better agreement
than was obtained by previous attempts using LST due to the inclusion of both curva-
ture and non-parallel effects. Furthermore, NPSE and LPSE results are in agreement
indicating that nonlinear interactions are unimportant for this configuration. Second,
for the NLF(2)-0415 swept airfoil with AOA near 0◦, the 12 mm spanwise-wavelength
crossflow disturbances are incredibly sensitive to changes in AOA, RC , and inclusion
of non-parallel and curvature terms in the stability calculations. Finally, it should also
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be noted that neglecting curvature causes a significant shift in the dominant spanwise
wavelength for cases near 0◦ AOA.

8. Conclusions
The NPSE results presented here explain the discrepancy between experimental

and theoretical stability results encountered by previous investigators (Arnal 1994;
Reibert et al. 1996). The major effect appears to be nonlinear saturation of the
crossflow disturbance. The NPSE results accurately capture the saturation of the
crossflow disturbance while the linear theories show no saturation for cases with a
strong favourable pressure gradient (−4◦ AOA). This confirms the importance of
nonlinearity for this case. However, an upstream region of linear growth does appear
for the small-amplitude initial conditions studied here. The nonlinear interaction is
strongest between the fundamental spanwise mode and its first harmonic (modes (0, 1)
and (0, 2)) and leads to vortex roll-over and an additional hump in the streamwise
disturbance velocity mode shapes.

Increasing the chord Reynolds number leads to earlier saturation and stronger
nonlinear interactions. Results presented here suggest the existence of an ‘equilibrium’
state for cases with RC > 2.4 × 106. For lower values of RC the disturbance behaves
linearly. For RC = 2.4× 106, non-parallel and curvature effects are found to be more
important as the favourable pressure gradient is reduced. For cases near AOA = 0◦
the NLF(2)-0415 configuration is extremely sensitive to these effects.

Previous experimental and complementary computational investigations (Radeztsky
et al. 1994) of crossflow disturbances for cases with a weak favourable pressure
gradient (AOA > −1◦) indicate that the crossflow disturbance is decaying in contrast
to predictions by linear theories (LST with and without curvature and LPSE without
curvature). Radeztsky et al. (1994) suggest that the disagreement is due to nonlinear
effects. Paradoxically, the experimentally measured disturbance urms profiles indicate
linear behaviour since they are lacking the development of an additional hump.
The results presented here confirm that the crossflow disturbance does decay and the
observed discrepancies are caused by the strong sensitivity of the crossflow disturbance
to changes in curvature, non-parallel, and pressure gradient (AOA) effects. The NPSE
and LPSE results indicate that the disturbance is in fact linear for this case.

The NPSE has proven to be a valuable tool for efficiently obtaining detailed
disturbance velocity fields without the overhead and complications associated with
direct numerical simulations. The agreement with experimental results presented here
is a testament to the accuracy of the NPSE for convective instabilities. However, the
NPSE relies on initial conditions from experiment or receptivity analysis. Efficient
determination of initial conditions for the NPSE is an active research topic.

Through this work, a detailed quantitative comparison and validation of NPSE
with a careful experiment has now been provided for three-dimensional boundary
layers. Moreover, the results validate the experiments of Reibert et al. (1996), and
Radeztsky et al. (1993, 1994) suggesting that their databases can be used by future
researchers to verify theories and numerical schemes. The results show the inadequacy
of linear theories for modelling these flows for significant crossflow amplitude and
demonstrate the effects of weak curvature to be more significant than slight changes
in basic state, especially near neutral-stability locations.

This work was supported by NASA Ames Research Center (NTG 50745) and the
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